Online Journal of Anthropology

DNA

 

Residents of the remote equatorial islands of Melanesia share fragments of genetic code with two extinct human species. That’s the key finding of a new study published March 17 in the journal Science.

 

An international team contributed to the research, which compared the DNA sequences of 35 modern people living on islands off the coast of New Guinea with DNA drawn from two early human species: Denisovans, whose remains were found in Siberia, and Neandertals, first discovered in Germany.

 

“Substantial amounts of Neandertal and Denisovan DNA can now be robustly identified in the genomes of present-day Melanesians, allowing new insights into human evolutionary history,” they wrote. “As genome-scale data from worldwide populations continues to accumulate, a nearly complete catalog of surviving archaic lineages may soon be within reach.”

 

D. Andrew Merriwether, a molecular anthropologist at Binghamton University, collected the modern-day blood samples used in the study about 15 years ago in Melanesia. This is the first time full genomes from those samples have been sequenced.

 

“I’m surprised that these Neandertal and Denisovan genomes made it out to this remote place,” he said. “We know people have been there for at least 48,000 years because we find human remains that go back that far, but no one has ever been able to connect them to any other place. When you compare most of their genome sequences, they don’t cluster with any other group. They’ve been there and been isolated for a very, very long time.”

 

Earlier studies have revealed some genetic overlap (about 2 percent) between Neandertals and non-African populations and little or no Neandertal and Denisovan ancestry among Africans. This new research suggests Neandertals and modern human ancestors intersected at least three times. It also found an overlap of between 1.9 and 3.4 percent in the genetic codes of Denisovans and modern-day Melanesians.

 

Skepticism about the new findings is entirely appropriate, said Merriwether, who specializes in reconstructing the past using samples from contemporary populations and ancient DNA from the archaeological record.

 
Continua a leggere

 

First genetic evidence of modern human DNA in a Neanderthal individual

 

Cold Spring Harbor, NY – Using several different methods of DNA analysis, an international research team has found what they consider to be strong evidence of an interbreeding event between Neanderthals and modern humans that occurred tens of thousands of years earlier than any other such event previously documented.

 

Today in Nature the team publishes evidence of interbreeding that occurred an estimated 100,000 years ago. More specifically the scientists provide the first genetic evidence of a scenario in which early modern humans left the African continent and mixed with archaic (now-extinct) members of the human family prior to the migration “out of Africa” of the ancestors of present-day non-Africans, less than 65,000 years ago.

 

siepel feb2016

 

Scenario of interbreeding between modern humans and Neanderthals: Neanderthal DNA in present-day humans outside Africa originates from interbreeding that occurred 47,000 – 65,000 years ago (green arrow). Modern human DNA in Neanderthals is likely a consequence of earlier contact between the two groups roughly 100,000 years ago (red arrow). © Ilan Gronau

 

“It’s been known for several years, following the first sequencing of the Neanderthal genome in 2010, that Neanderthals and humans must have interbred,” says Professor Adam Siepel, a co-team leader and Cold Spring Harbor Laboratory (CSHL) quantitative biologist.  “But the data so far refers to an event dating to around 47,000-65,000 years ago, around the time that human populations emigrated from Africa. The event we found appears considerably older than that event.”

 

In addition to Siepel, who is Chair of CSHL’s Simons Center for Quantitative Biology, the team included several members of the Max Plank Institute for Evolutionary Anthropology, including Martin Kuhlwilm, Svante Pääbo, Matthias Meyer and co-team leader Sergi Castellano. Kuhlwilm was co-first author of the new paper with Ilan Gronau, a former member of Siepel’s Lab who is now at the Herzliya Interdisciplinary Center, Israel. Melissa Hubisz, a Ph.D. student with Siepel at Cornell University, also made major contributions to the work.  The full international research team included 15 additional co-authors.

 

 

“One very interesting thing about our finding is that it shows a signal of breeding in the ‘opposite’ direction from that already known,” Siepel notes. “That is, we show human DNA in a Neanderthal genome, rather than Neanderthal DNA in human genomes.”

 

This finding, the result of several kinds of advanced computer modeling algorithms comparing complete genomes of hundreds of contemporary humans with complete and partial genomes of four archaic humans, has implications for our knowledge of human migration patterns.

 
Continua a leggere